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1
INSTRUCTION SET ARCHITECTURE WITH
OPCODE LOOKUP USING MEMORY
ATTRIBUTE

FIELD OF THE INVENTION

The invention is generally related to data processing, and in
particular to instruction set architectures for processors and
computers incorporating the same.

BACKGROUND OF THE INVENTION

The fundamental task of every computer processor is to
execute computer programs. How a processor handles this
task, and how computer programs must present themselves to
a processor for execution, are governed by both the instruc-
tion set architecture (ISA) and the microarchitecture of the
processor. An ISA is analogous to a programming model, and
relates principally to how instructions in a computer program
should be formatted in order to be properly decoded and
executed by a processor, although an ISA may also specify
other aspects of the processor, such as native data types,
registers, addressing modes, memory architecture, interrupt
and exception handling, and external 1/O. The microarchitec-
ture principally governs lower level details regarding how
instructions are decoded and executed, including the constitu-
ent parts of the processor (e.g., the types of execution units
such as fixed and floating point execution units) and how
these interconnect and interoperate to implement the proces-
sor’s architectural specification.

An ISA typically includes a specification of the format of
each type of instruction that is capable of being executed by a
particular processor design. Typically, an instruction will be
encoded to include an operational code, or opcode, that iden-
tifies the type of instruction, (i.e., the type of operation to be
performed when the instruction is executed), as well as one or
more operands that identify input and/or output data to be
processed by the instruction. In many processor designs, for
example Reduced Instruction Set Computer (RISC) and other
load-store designs, data is principally manipulated within a
set of general purpose registers (GPR’s) (often referred to as
a “register file”), with load and store instructions used to
respectively retrieve input data into GPR’s from memory and
store result or output data from GPR’s and back into memory.
Thus, for a majority of the instructions that manipulate data,
the instructions specify one or more input or source registers
from which input data is retrieved, and an output or destina-
tion register to which result data is written.

Instructions are typically defined in an ISA to be a fixed
size, e.g., 32 bits or 64 bits in width. While multiple 32 or 64
bit values may be used to specify an instruction, the use of
multiple values is undesirable because the multiple values
take more time to propagate through the processor and sig-
nificantly increase design complexity. With these fixed
instruction widths, only a limited number of bits are available
for use as opcodes and operands.

Each unique instruction type conventionally requires a
unique opcode, so in order to support a greater number of
instruction types (a continuing need in the industry), addi-
tional bits often must be allocated to the opcode portion of an
instruction architecture. In some instances, opcodes may be
broken into primary and secondary opcodes, with the primary
opcode defining an instruction type and the secondary opcode
defining a subtype for a particular instruction type; however,
even when primary and secondary opcodes are used, both
opcodes occupy bit positions in each instruction.
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Likewise, a continuing need exists for expanding the num-
ber of registers supported by an ISA, since improvements in
fabrication technology continue to enable greater numbers of
registers to be architected into an integrated circuit, and in
general performance improves as the number of registers
increases.

Each register requires a unique identifier as well, so as the
number of registers increases, the number of bit positions in
each instruction required to identify all supported registers
likewise increases.

As an example, consider a processor architecture that sup-
ports 32-bit instructions with 6-bit primary opcode fields, and
thus supports a total of 64 types, or classes of instructions. If,
for example, it is desirable to implement within this architec-
ture a class of instructions that identifies up to three source
registers and a separate destination register from a register file
ot 64 registers, each operand requires a 6-bit operand field. As
such, 6 bits are needed for the primary opcode, 18 bits are
needed for the source register addresses and 6 bits are needed
for the target register address, leaving only 2 bits for an
extended opcode, and allowing for only four possible instruc-
tions in this instruction class.

Implementing a register file of 128 registers using 32-bit
instructions is even more problematic. If, for example, some
ofthe instructions in a class of an instruction set architecture
required three source registers and one target register, the
operands would require 28 bits (7 bits per operand), only four
bits would be available for any primary and/or secondary
opcode. Thus, for example, if four bits were required for a
primary opcode to identify a particular instruction class, that
instruction class would be limited to a single instruction,
since there would be no space for any secondary or extended
opcode.

In most instances, however, more instruction types are
needed for an architecture to be useful. For instance, an
instruction class for performing floating point operations may
need instruction types that perform addition, subtraction,
multiplication, fused multiply-add operations, division,
exponentiation, trigonometric operations, comparison opera-
tions, and others.

Conventional attempts have been made to address these
limitations. For example, three-source operations may be
made destructive, meaning the target and one source address
would be implicitly equal, such that one address field in the
above example would not be needed, freeing up space for
additional extended opcodes. Destructive operations, how-
ever, are often not convenient for compilers and software
engineers, because often times an extra copy of the source
data that would be overwritten by the destructive operation
needs to be saved away in a temporary register, which can
have potential performance problems in addition to using
valuable temporary register space.

Therefore, a significant need continues to exist in the art for
amanner of increasing the number and complexity of instruc-
tions supported by an instruction set architecture.

SUMMARY OF THE INVENTION

The invention addresses these and other problems associ-
ated with the prior art by providing circuit arrangement that
decodes instructions based in part on one or more decode-
related attributes stored in a memory address translation data
structure such as an Effective To Real Translation (ERAT) or
Translation Lookaside Buffer (TLB). A memory address
translation data structure may be accessed, for example, in
connection with a decode of an instruction stored in a page of
memory, such that one or more attributes associated with the
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page in the data structure may be used to control how that
instruction is decoded. In some embodiments, for example, a
memory attribute may be used to access a table of software
loadable primary opcodes for an instruction, such that the
primary opcode indexed by the memory attribute will be used,
either alone or in combination with other information in the
instruction, to decode the instruction. By doing so, additional
space is freed up in the instruction to support a larger register
file and/or additional instruction types, e.g., as specified by a
secondary or extended opcode.

Therefore, consistent with one aspect of the invention,
instructions from an instruction set architecture are executed
in a processing unit by, in response to receiving an instruction
in an instruction stream, accessing a decode-related attribute
in a memory address translation data structure, where the
instruction is associated with an address at which the instruc-
tion is stored in an address space, where the memory address
translation data structure is used to perform memory address
translation for instructions in the instruction stream, and
where the decode-related attribute is accessed using at least a
portion of the address; and decoding at least a portion of an
opcode for the instruction using the decode-related attribute.

These and other advantages and features, which character-
ize the invention, are set forth in the claims annexed hereto
and forming a further part hereof. However, for a better under-
standing of the invention, and of the advantages and objec-
tives attained through its use, reference should be made to the
Drawings, and to the accompanying descriptive matter, in
which there is described exemplary embodiments of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of exemplary automated com-
puting machinery including an exemplary computer useful in
data processing consistent with embodiments of the present
invention.

FIG. 2 is a block diagram of an exemplary NOC imple-
mented in the computer of FIG. 1.

FIG. 3 is a block diagram illustrating in greater detail an
exemplary implementation of a node from the NOC of FIG. 2.

FIG. 4 is a block diagram illustrating an exemplary imple-
mentation of an IP block from the NOC of FIG. 2.

FIG. 5 is a block diagram of an exemplary data processing
system incorporating memory address translation-based
instruction decoding consistent with the invention.

FIG. 6 is a block diagram of an exemplary instruction
format for a stored instruction in the instruction buffer refer-
enced in FIG. 5.

FIG. 7 is a block diagram of an exemplary ERAT entry
format for the ERAT referenced in FIG. 5.

FIG. 8 is a block diagram illustrating an exemplary instruc-
tion decode using a data processing system supporting
memory address translation-based instruction decode consis-
tent with the invention.

FIG. 9 is a flowchart illustrating an exemplary sequence of
operations for executing extended mode instructions in the
data processing system of FIG. 7.

DETAILED DESCRIPTION

Embodiments consistent with the invention decode an
instruction based in part on one or more decode-related
attributes stored in a memory address translation data struc-
ture, which may be used, for example, to access an opcode
table or other data structure to determine at least a portion of
an opcode for the instruction. A memory address translation
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data structure such as a page table entry (PTE) stored in an
ERAT or TLLB may be accessed, for example, in connection
with a decode of an instruction stored in a page of memory,
such that one or more attributes associated with the page in
the data structure may be used to control how that instruction
is decoded.

A decode-related attribute for use in connection with
address translation-based instruction decode may include, for
example, an index, or a portion of an index, which may be
used to access an opcode table or other data structure. Other
attributes that may be used to decode an instruction, includ-
ing, for example, all or a portion of an opcode, may be stored
in a memory address translation data structure in the alterna-
tive.

Other variations and modifications will be apparent to one
of ordinary skill in the art. Therefore, the invention is not
limited to the specific implementations discussed herein.

Hardware and Software Environment

Now turning to the drawings, wherein like numbers denote
like parts throughout the several views, FIG. 1 illustrates
exemplary automated computing machinery including an
exemplary computer 10 useful in data processing consistent
with embodiments of the present invention. Computer 10 of
FIG. 1 includes at least one computer processor 12 or ‘CPU’
as well as random access memory 14 (‘RAM’), which is
connected through a high speed memory bus 16 and bus
adapter 18 to processor 12 and to other components of the
computer 10.

Stored in RAM 14 is an application program 20, a module
of user-level computer program instructions for carrying out
particular data processing tasks such as, for example, word
processing, spreadsheets, database operations, video gaming,
stock market simulations, atomic quantum process simula-
tions, or other user-level applications. Also stored in RAM 14
is an operating system 22. Operating systems useful in con-
nection with embodiments of the invention include UNIX™,
Linux™, Microsoft Windows XP™, AIX™ [BM’s i5/0S™,
and others as will occur to those of skill in the art. Operating
system 22 and application 20 in the example of FIG. 1 are
shown in RAM 14, but many components of such software
typically are stored in non-volatile memory also, e.g., on a
disk drive 24.

As will become more apparent below, embodiments con-
sistent with the invention may be implemented within Net-
work On Chip (NOC) integrated circuit devices, or chips, and
as such, computer 10 is illustrated including two exemplary
NOC:s: a video adapter 26 and a coprocessor 28. NOC video
adapter 26, which may alternatively be referred to as a graph-
ics adapter, is an example of an I/O adapter specially designed
for graphic output to a display device 30 such as a display
screen or computer monitor. NOC video adapter 26 is con-
nected to processor 12 through a high speed video bus 32, bus
adapter 18, and the front side bus 34, which is also a high
speed bus. NOC Coprocessor 28 is connected to processor 12
through bus adapter 18, and front side buses 34 and 36, which
is also a high speed bus. The NOC coprocessor of FIG. 1 may
be optimized, for example, to accelerate particular data pro-
cessing tasks at the behest of the main processor 12.

The exemplary NOC video adapter 26 and NOC coproces-
sor 28 of FIG. 1 each include a NOC, including integrated
processor (‘IP’) blocks, routers, memory communications
controllers, and network interface controllers, the details of
which will be discussed in greater detail below in connection
with FIGS. 2-3. The NOC video adapter and NOC coproces-
sor are each optimized for programs that use parallel process-
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ing and also require fast random access to shared memory. It
will be appreciated by one of ordinary skill in the art having
the benefit of the instant disclosure, however, that the inven-
tion may be implemented in devices and device architectures
other than NOC devices and device architectures. The inven-
tion is therefore not limited to implementation withinan NOC
device.

Computer 10 of FIG. 1 includes disk drive adapter 38
coupled through an expansion bus 40 and bus adapter 18 to
processor 12 and other components of the computer 10. Disk
drive adapter 38 connects non-volatile data storage to the
computer 10 in the form of disk drive 24, and may be imple-
mented, for example, using Integrated Drive Electronics
(‘IDE’) adapters, Small Computer System Interface (‘SCSI”)
adapters, and others as will occur to those of skill in the art.
Non-volatile computer memory also may be implemented for
as an optical disk drive, electrically erasable programmable
read-only memory (so-called ‘EEPROM’ or ‘Flash’
memory), RAM drives, and so on, as will occur to those of
skill in the art.

Computer 10 also includes one or more input/output (‘I/
0O’) adapters 42, which implement user-oriented input/output
through, for example, software drivers and computer hard-
ware for controlling output to display devices such as com-
puter display screens, as well as user input from user input
devices 44 such as keyboards and mice. In addition, computer
10 includes a communications adapter 46 for data communi-
cations with other computers 48 and for data communications
with a data communications network 50. Such data commu-
nications may be carried out serially through RS-232 connec-
tions, through external buses such as a Universal Serial Bus
(‘USB’), through data communications data communications
networks such as IP data communications networks, and in
other ways as will occur to those of skill in the art. Commu-
nications adapters implement the hardware level of data com-
munications through which one computer sends data commu-
nications to another computer, directly or through a data
communications network. Examples of communications
adapters suitable for use in computer 10 include modems for
wired dial-up communications, Ethernet (IEEE 802.3) adapt-
ers for wired data communications network communications,
and 802.11 adapters for wireless data communications net-
work communications.

For further explanation, FIG. 2 sets forth a functional block
diagram of an example NOC 102 according to embodiments
of the present invention. The NOC in FIG. 2 is implemented
on a ‘chip’ 100, that is, on an integrated circuit. NOC 102
includes integrated processor (‘IP”) blocks 104, routers 110,
memory communications controllers 106, and network inter-
face controllers 108 grouped into interconnected nodes. Each
1P block 104 is adapted to a router 110 through a memory
communications controller 106 and a network interface con-
troller 108. Each memory communications controller con-
trols communications between an IP block and memory, and
each network interface controller 108 controls inter-IP block
communications through routers 110.

In NOC 102, each IP block represents a reusable unit of
synchronous or asynchronous logic design used as a building
block for data processing within the NOC. The term ‘IP
block’ is sometimes expanded as ‘intellectual property
block,” effectively designating an IP block as a design that is
owned by a party, that is the intellectual property of a party, to
be licensed to other users or designers of semiconductor
circuits. In the scope of the present invention, however, there
is no requirement that IP blocks be subject to any particular
ownership, so the term is always expanded in this specifica-
tion as ‘integrated processor block.” IP blocks, as specified

10

15

20

25

30

35

40

45

50

55

60

65

6

here, are reusable units of logic, cell, or chip layout design
that may or may not be the subject of intellectual property. IP
blocks are logic cores that can be formed as ASIC chip
designs or FPGA logic designs.

One way to describe IP blocks by analogy is that IP blocks
are for NOC design what a library is for computer program-
ming or a discrete integrated circuit component is for printed
circuit board design. In NOCs consistent with embodiments
of the present invention, IP blocks may be implemented as
generic gate netlists, as complete special purpose or general
purpose microprocessors, or in other ways as may occur to
those of skill in the art. A netlist is a Boolean-algebra repre-
sentation (gates, standard cells) of an IP block’s logical-
function, analogous to an assembly-code listing for a high-
level program application. NOCs also may be implemented,
for example, in synthesizable form, described in a hardware
description language such as Verilog or VHDL. In addition to
netlist and synthesizable implementation, NOCs also may be
delivered in lower-level, physical descriptions. Analog IP
block elements such as SERDES, PLL, DAC, ADC, and so
on, may be distributed in a transistor-layout format such as
GDSII. Digital elements of IP blocks are sometimes offered
in layout format as well. It will also be appreciated that IP
blocks, as well as other logic circuitry implemented consis-
tent with the invention may be distributed in the form of
computer data files, e.g., logic definition program code, that
define at various levels of detail the functionality and/or lay-
out of the circuit arrangements implementing such logic.
Thus, while the invention has and hereinafter will be
described in the context of circuit arrangements implemented
in fully functioning integrated circuit devices, data process-
ing systems utilizing such devices, and other tangible, physi-
cal hardware circuits, those of ordinary skill in the art having
the benefit of the instant disclosure will appreciate that the
invention may also be implemented within a program prod-
uct, and that the invention applies equally regardless of the
particular type of computer readable storage medium being
used to distribute the program product. Examples of com-
puter readable storage media include, but are not limited to,
physical, recordable type media such as volatile and non-
volatile memory devices, floppy disks, hard disk drives, CD-
ROMs, and DVDs (among others).

Each IP block 104 in the example of FIG. 2 is adapted to a
router 110 through a memory communications controller
106. Each memory communication controller is an aggrega-
tion of synchronous and asynchronous logic circuitry adapted
to provide data communications between an IP block and
memory. Examples of such communications between IP
blocks and memory include memory load instructions and
memory store instructions. The memory communications
controllers 106 are described in more detail below with ref-
erence to FI1G. 3. Each IP block 104 is also adapted to a router
110 through a network interface controller 108, which con-
trols communications through routers 110 between IP blocks
104. Examples of communications between IP blocks include
messages carrying data and instructions for processing the
data among IP blocks in parallel applications and in pipelined
applications. The network interface controllers 108 are also
described in more detail below with reference to FIG. 3.

Routers 110, and the corresponding links 118 therebe-
tween, implement the network operations of the NOC. The
links 118 may be packet structures implemented on physical,
parallel wire buses connecting all the routers. That is, each
link may be implemented on a wire bus wide enough to
accommodate simultaneously an entire data switching
packet, including all header information and payload data. If
a packet structure includes 64 bytes, for example, including
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an eight byte header and 56 bytes of payload data, then the
wire bus subtending each link is 64 bytes wide, 512 wires. In
addition, each link may be bi-directional, so that if the link
packet structure includes 64 bytes, the wire bus actually con-
tains 1024 wires between each router and each of its neigh-
bors in the network. In such an implementation, a message
could include more than one packet, but each packet would fit
precisely onto the width of the wire bus. In the alternative, a
link may be implemented on a wire bus that is only wide
enough to accommodate a portion of a packet, such that a
packet would be broken up into multiple beats, e.g., so that if
alink is implemented as 16 bytes in width, or 128 wires, a 64
byte packet could be broken into four beats. It will be appre-
ciated that different implementations may used different bus
widths based on practical physical limits as well as desired
performance characteristics. If the connection between the
router and each section of wire bus is referred to as a port, then
each router includes five ports, one for each of four directions
of data transmission on the network and a fifth port for adapt-
ing the router to a particular IP block through a memory
communications controller and a network interface control-
ler.

Each memory communications controller 106 controls
communications between an IP block and memory. Memory
can include off-chip main RAM 112, memory 114 connected
directly to an IP block through a memory communications
controller 106, on-chip memory enabled as an IP block 116,
and on-chip caches. In NOC 102, either of the on-chip memo-
ries 114, 116, for example, may be implemented as on-chip
cache memory. All these forms of memory can be disposed in
the same address space, physical addresses or virtual
addresses, true even for the memory attached directly to an I[P
block. Memory addressed messages therefore can be entirely
bidirectional with respect to IP blocks, because such memory
can be addressed directly from any IP block anywhere on the
network. Memory 116 on an IP block can be addressed from
that IP block or from any other IP block in the NOC. Memory
114 attached directly to a memory communication controller
can be addressed by the IP block that is adapted to the network
by that memory communication controller and can also be
addressed from any other IP block anywhere in the NOC.

NOC 102 includes two memory management units
(“MMUs”) 120, 122, illustrating two alternative memory
architectures for NOCs consistent with embodiments of the
present invention. MMU 120 is implemented within an IP
block, allowing a processor within the IP block to operate in
virtual memory while allowing the entire remaining architec-
ture of the NOC to operate in a physical memory address
space. MMU 122 is implemented off-chip, connected to the
NOC through a data communications port 124. The port 124
includes the pins and other interconnections required to con-
duct signals between the NOC and the MMU, as well as
sufficient intelligence to convert message packets from the
NOC packet format to the bus format required by the external
MMU 122. The external location of the MMU means that all
processors in all IP blocks of the NOC can operate in virtual
memory address space, with all conversions to physical
addresses of the off-chip memory handled by the off-chip
MMU 122.

In addition to the two memory architectures illustrated by
use of the MMUSs 120, 122, data communications port 126
illustrates a third memory architecture useful in NOCs
capable of being utilized in embodiments of the present
invention. Port 126 provides a direct connection between an
1P block 104 of the NOC 102 and off-chip memory 112. With
no MMU in the processing path, this architecture provides
utilization of a physical address space by all the IP blocks of
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the NOC. In sharing the address space bi-directionally, all the
IP blocks of the NOC can access memory in the address space
by memory-addressed messages, including loads and stores,
directed through the IP block connected directly to the port
126. The port 126 includes the pins and other interconnec-
tions required to conduct signals between the NOC and the
off-chip memory 112, as well as sufficient intelligence to
convert message packets from the NOC packet format to the
bus format required by the off-chip memory 112.

Inthe example of F1G. 2, one of the IP blocks is designated
a host interface processor 128. A host interface processor 128
provides an interface between the NOC and a host computer
10 in which the NOC may be installed and also provides data
processing services to the other IP blocks on the NOC, includ-
ing, for example, receiving and dispatching among the IP
blocks of the NOC data processing requests from the host
computer. A NOC may, for example, implement a video
graphics adapter 26 or a coprocessor 28 on a larger computer
10 as described above with reference to FIG. 1. In the example
of FIG. 2, the host interface processor 128 is connected to the
larger host computer through a data communications port
130. The port 130 includes the pins and other interconnec-
tions required to conduct signals between the NOC and the
host computer, as well as sufficient intelligence to convert
message packets from the NOC to the bus format required by
the host computer 10. In the example of the NOC coprocessor
in the computer of FIG. 1, such a port would provide data
communications format translation between the link structure
of'the NOC coprocessor 28 and the protocol required for the
front side bus 36 between the NOC coprocessor 28 and the
bus adapter 18.

FIG. 3 next illustrates a functional block diagram illustrat-
ing in greater detail the components implemented within an
IP block 104, memory communications controller 106, net-
work interface controller 108 and router 110 in NOC 102,
collectively illustrated at 132. IP block 104 includes a com-
puter processor 134 and I/O functionality 136. In this
example, computer memory is represented by a segment of
random access memory (‘RAM’) 138 in IP block 104. The
memory, as described above with reference to FIG. 2, can
occupy segments of a physical address space whose contents
on each IP block are addressable and accessible from any IP
block in the NOC. The processors 134, 1/O capabilities 136,
and memory 138 in each IP block effectively implement the
IP blocks as generally programmable microcomputers. As
explained above, however, in the scope of the present inven-
tion, IP blocks generally represent reusable units of synchro-
nous or asynchronous logic used as building blocks for data
processing within a NOC. Implementing IP blocks as gener-
ally programmable microcomputers, therefore, although a
common embodiment useful for purposes of explanation, is
not a limitation of the present invention.

In NOC 102 of FIG. 3, each memory communications
controller 106 includes a plurality of memory communica-
tions execution engines 140. Each memory communications
execution engine 140 is enabled to execute memory commu-
nications instructions from an IP block 104, including bidi-
rectional memory communications instruction flow 141, 142,
144 between the network and the IP block 104. The memory
communications instructions executed by the memory com-
munications controller may originate, not only from the IP
block adapted to a router through a particular memory com-
munications controller, but also from any IP block 104 any-
where in NOC 102. That is, any IP block in the NOC can
generate a memory communications instruction and transmit
that memory communications instruction through the routers
of the NOC to another memory communications controller
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associated with another IP block for execution of that
memory communications instruction. Such memory commu-
nications instructions can include, for example, translation
lookaside buffer control instructions, cache control instruc-
tions, barrier instructions, and memory load and store instruc-
tions.

Each memory communications execution engine 140 is
enabled to execute a complete memory communications
instruction separately and in parallel with other memory com-
munications execution engines. The memory communica-
tions execution engines implement a scalable memory trans-
action processor optimized for concurrent throughput of
memory communications instructions. Memory communica-
tions controller 106 supports multiple memory communica-
tions execution engines 140 all of which run concurrently for
simultaneous execution of multiple memory communications
instructions. A new memory communications instruction is
allocated by the memory communications controller 106 to a
memory communications engine 140 and memory commu-
nications execution engines 140 can accept multiple response
events simultaneously. In this example, all of the memory
communications execution engines 140 are identical. Scaling
the number of memory communications instructions that can
be handled simultaneously by a memory communications
controller 106, therefore, is implemented by scaling the num-
ber of memory communications execution engines 140.

In NOC 102 of FIG. 3, each network interface controller
108 is enabled to convert communications instructions from
command format to network packet format for transmission
among the IP blocks 104 through routers 110. The commu-
nications instructions may be formulated in command format
by the IP block 104 or by memory communications controller
106 and provided to the network interface controller 108 in
command format. The command format may be a native
format that conforms to architectural register files of IP block
104 and memory communications controller 106. The net-
work packet format is typically the format required for trans-
mission through routers 110 of the network. Each such mes-
sage is composed of one or more network packets. Examples
of such communications instructions that are converted from
command format to packet format in the network interface
controller include memory load instructions and memory
store instructions between IP blocks and memory. Such com-
munications instructions may also include communications
instructions that send messages among IP blocks carrying
data and instructions for processing the data among IP blocks
in parallel applications and in pipelined applications.

In NOC 102 of FIG. 3, each IP block is enabled to send
memory-address-based communications to and from
memory through the IP block’s memory communications
controller and then also through its network interface control-
ler to the network. A memory-address-based communica-
tions is a memory access instruction, such as a load instruc-
tion or a store instruction, that is executed by a memory
communication execution engine of a memory communica-
tions controller of an IP block. Such memory-address-based
communications typically originate in an IP block, formu-
lated in command format, and handed off to a memory com-
munications controller for execution.

Many memory-address-based communications are
executed with message traffic, because any memory to be
accessed may be located anywhere in the physical memory
address space, on-chip or off-chip, directly attached to any
memory communications controller in the NOC, or ulti-
mately accessed through any IP block of the NOC—regard-
less of which IP block originated any particular memory-
address-based communication. Thus, in NOC 102, all
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memory-address-based communications that are executed
with message traffic are passed from the memory communi-
cations controller to an associated network interface control-
ler for conversion from command format to packet format and
transmission through the network in a message. In converting
to packet format, the network interface controller also iden-
tifies a network address for the packet in dependence upon the
memory address or addresses to be accessed by a memory-
address-based communication. Memory address based mes-
sages are addressed with memory addresses. Each memory
address is mapped by the network interface controllers to a
network address, typically the network location of a memory
communications controller responsible for some range of
physical memory addresses. The network location of a
memory communication controller 106 is naturally also the
network location of that memory communication controller’s
associated router 110, network interface controller 108, and
IP block 104. The instruction conversion logic 150 within
each network interface controller is capable of converting
memory addresses to network addresses for purposes of
transmitting ~ memory-address-based  communications
through routers of a NOC.

Upon receiving message traffic from routers 110 of the
network, each network interface controller 108 inspects each
packet for memory instructions. Each packet containing a
memory instruction is handed to the memory communica-
tions controller 106 associated with the receiving network
interface controller, which executes the memory instruction
before sending the remaining payload of the packet to the IP
block for further processing. In this way, memory contents are
always prepared to support data processing by an IP block
before the IP block begins execution of instructions from a
message that depend upon particular memory content.

In NOC 102 of FIG. 3, each IP block 104 is enabled to
bypass its memory communications controller 106 and send
inter-IP block, network-addressed communications 146
directly to the network through the IP block’s network inter-
face controller 108. Network-addressed communications are
messages directed by a network address to another IP block.
Such messages transmit working data in pipelined applica-
tions, multiple data for single program processing among IP
blocks in a SIMD application, and so on, as will occurto those
of skill in the art. Such messages are distinct from memory-
address-based communications in that they are network
addressed from the start, by the originating IP block which
knows the network address to which the message is to be
directed through routers of the NOC. Such network-ad-
dressed communications are passed by the IP block through
1/0O functions 136 directly to the IP block’s network interface
controller in command format, then converted to packet for-
mat by the network interface controller and transmitted
through routers of the NOC to another IP block. Such net-
work-addressed communications 146 are bi-directional,
potentially proceeding to and from each IP block of the NOC,
depending on their use in any particular application. Each
network interface controller, however, is enabled to both send
and receive such communications to and from an associated
router, and each network interface controller is enabled to
both send and receive such communications directly to and
from an associated IP block, bypassing an associated memory
communications controller 106.

Each network interface controller 108 in the example of
FIG. 3 is also enabled to implement virtual channels on the
network, characterizing network packets by type. Each net-
work interface controller 108 includes virtual channel imple-
mentation logic 148 that classifies each communication
instruction by type and records the type of instruction in a
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field of the network packet format before handing off the
instruction in packet form to a router 110 for transmission on
the NOC. Examples of communication instruction types
include inter-IP block network-address-based messages,
request messages, responses to request messages, invalidate
messages directed to caches; memory load and store mes-
sages; and responses to memory load messages, etc.

Each router 110 in the example of FIG. 3 includes routing
logic 152, virtual channel control logic 154, and virtual chan-
nel buffers 156. The routing logic typically is implemented as
anetwork of synchronous and asynchronous logic that imple-
ments a data communications protocol stack for data com-
munication in the network formed by the routers 110, links
118, and bus wires among the routers. Routing logic 152
includes the functionality that readers of skill in the art might
associate in off-chip networks with routing tables, routing
tables in at least some embodiments being considered too
slow and cumbersome for use in a NOC. Routing logic imple-
mented as a network of synchronous and asynchronous logic
can be configured to make routing decisions as fast as a single
clock cycle. The routing logic in this example routes packets
by selecting a port for forwarding each packet received in a
router. Hach packet contains a network address to which the
packet is to be routed.

In describing memory-address-based communications
above, each memory address was described as mapped by
network interface controllers to a network address, a network
location of a memory communications controller. The net-
work location of a memory communication controller 106 is
naturally also the network location of that memory commu-
nication controller’s associated router 110, network interface
controller 108, and IP block 104. In inter-IP block, or net-
work-address-based communications, therefore, it is also
typical for application-level data processing to view network
addresses as the location of an IP block within the network
formed by the routers, links, and bus wires of the NOC. FIG.
2 illustrates that one organization of such a network is a mesh
of rows and columns in which each network address can be
implemented, for example, as either a unique identifier for
each set of associated router, IP block, memory communica-
tions controller, and network interface controller of the mesh
or X, y coordinates of each such set in the mesh.

In NOC 102 of FIG. 3, each router 110 implements two or
more virtual communications channels, where each virtual
communications channel is characterized by a communica-
tion type. Communication instruction types, and therefore
virtual channel types, include those mentioned above: inter-
IP block network-address-based messages, request mes-
sages, responses to request messages, invalidate messages
directed to caches; memory load and store messages; and
responses to memory load messages, and so on. In support of
virtual channels, each router 110 in the example of FIG. 3 also
includes virtual channel control logic 154 and virtual channel
buffers 156. The virtual channel control logic 154 examines
each received packet for its assigned communications type
and places each packet in an outgoing virtual channel buffer
for that communications type for transmission through a port
to a neighboring router on the NOC.

Each virtual channel buffer 156 has finite storage space.
When many packets are received in a short period of time, a
virtual channel buffer can fill up—so that no more packets can
be put in the buffer. In other protocols, packets arriving on a
virtual channel whose buffer is full would be dropped. Each
virtual channel buffer 156 in this example, however, is
enabled with control signals of the bus wires to advise sur-
rounding routers through the virtual channel control logic to
suspend transmission in a virtual channel, that is, suspend
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transmission of packets of a particular communications type.
When one virtual channel is so suspended, all other virtual
channels are unaffected—and can continue to operate at full
capacity. The control signals are wired all the way back
through each router to each router’s associated network inter-
face controller 108. Each network interface controller is con-
figured to, upon receipt of such a signal, refuse to accept, from
its associated memory communications controller 106 or
from its associated IP block 104, communications instruc-
tions for the suspended virtual channel. In this way, suspen-
sion of a virtual channel affects all the hardware that imple-
ments the virtual channel, all the way back up to the
originating IP blocks.

One effect of suspending packet transmissions in a virtual
channel is that no packets are ever dropped. When a router
encounters a situation in which a packet might be dropped in
some unreliable protocol such as, for example, the Internet
Protocol, the routers in the example of FIG. 3 may suspend by
their virtual channel buffers 156 and their virtual channel
control logic 154 all transmissions of packets in a virtual
channel until buffer space is again available, eliminating any
need to drop packets. The NOC of FIG. 3, therefore, may
implement highly reliable network communications proto-
cols with an extremely thin layer of hardware.

The example NOC of FIG. 3 may also be configured to
maintain cache coherency between both on-chip and oft-chip
memory caches. Each NOC can support multiple caches each
of which operates against the same underlying memory
address space. For example, caches may be controlled by IP
blocks, by memory communications controllers, or by cache
controllers external to the NOC. Either of the on-chip memo-
ries 114, 116 in the example of FIG. 2 may also be imple-
mented as an on-chip cache, and, within the scope of the
present invention, cache memory can be implemented off-
chip also.

Each router 110 illustrated in FIG. 3 includes five ports,
four ports 158 A-D connected through bus wires 118 to other
routers and a fifth port 160 connecting each router to its
associated IP block 104 through a network interface control-
ler 108 and a memory communications controller 106. As can
be seen from the illustrations in FIGS. 2 and 3, the routers 110
and the links 118 of the NOC 102 form a mesh network with
vertical and horizontal links connecting vertical and horizon-
tal ports in each router. In the illustration of FIG. 3, for
example, ports 158A, 158C and 160 are termed vertical ports,
and ports 158B and 158D are termed horizontal ports.

FIG. 4 next illustrates in another manner one exemplary
implementation of an IP block 104 consistent with the inven-
tion, implemented as a processing element partitioned into an
issue or instruction unit (IU) 162, execution unit (XU) 164
and auxiliary execution unit (AXU) 166. In the illustrated
implementation, IU 162 includes a plurality of instruction
buffers 168 that receive instructions from an L1 instruction
cache (iCACHE) 170. Each instruction buffer 168 is dedi-
cated to one of a plurality, e.g., four, symmetric multithreaded
(SMT) hardware threads. An effective-to-real translation unit
(iERAT) 172 is coupled to iCACHE 170, and is used to
translate instruction fetch requests from a plurality of thread
fetch sequencers 174 into real addresses for retrieval of
instructions from lower order memory. Each thread fetch
sequencer 174 is dedicated to a particular hardware thread,
and is used to ensure that instructions to be executed by the
associated thread is fetched into the iCACHE for dispatch to
the appropriate execution unit. As also shown in FIG. 4,
instructions fetched into instruction buffer 168 may also be
monitored by branch prediction logic 176, which provides
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hints to each thread fetch sequencer 174 to minimize instruc-
tion cache misses resulting from branches in executing
threads.

TU 162 also includes a dependency/issue logic block 178
dedicated to each hardware thread, and configured to resolve
dependencies and control the issue of instructions from
instruction buffer 168 to XU 164. In addition, in the illus-
trated embodiment, separate dependency/issue logic 180 is
provided in AXU 166, thus enabling separate instructions to
be concurrently issued by different threads to XU 164 and
AXU 166. In an alternative embodiment, logic 180 may be
disposed in IU 162, or may be omitted in its entirety, such that
logic 178 issues instructions to AXU 166.

XU 164 is implemented as a fixed point execution unit,
including a set of general purpose registers (GPR’s) 182
coupled to fixed point logic 184, branch logic 186 and load/
store logic 188. Load/store logic 188 is coupled to an .1 data
cache (dCACHE) 190, with effective to real translation pro-
vided by dERAT logic 192. XU 164 may be configured to
implement practically any instruction set, e.g., all or a portion
of a 32b or 64b PowerPC instruction set.

AXU 166 operates as an auxiliary execution unit including
dedicated dependency/issue logic 180 along with one or more
execution blocks 194. AXU 166 may include any number of
execution blocks, and may implement practically any type of
execution unit, e.g., a floating point unit, or one or more
specialized execution units such as encryption/decryption
units, coprocessors, vector processing units, graphics pro-
cessing units, XML processing units, etc. In the illustrated
embodiment, AXU 166 includes a high speed auxiliary inter-
face to XU 164, e.g., to support direct moves between AXU
architected state and XU architected state.

Communication with IP block 104 may be managed in the
manner discussed above in connection with FIG. 2, via net-
work interface controller 108 coupled to NOC 102. Address-
based communication, e.g., to access .2 cache memory, may
be provided, along with message-based communication. For
example, each IP block 104 may include a dedicated in box
and/or out box in order to handle inter-node communications
between IP blocks.

Embodiments of the present invention may be imple-
mented within the hardware and software environment
described above in connection with FIGS. 1-4. However, it
will be appreciated by one of ordinary skill in the art having
the benefit of the instant disclosure that the invention may be
implemented in a multitude of different environments, and
that other modifications may be made to the aforementioned
hardware and software embodiment without departing from
the spirit and scope of the invention. As such, the invention is
not limited to the particular hardware and software environ-
ment disclosed herein.

Address Translation-Based Instruction Decode

Processor instructions have an opcode for each type of
operation that is represented by a unique bit pattern in the data
that makes up the instruction. Due to the ever expanding
number of registers in modern processor cores, the address
widths present in the instruction encoding continue to widen,
taking up valuable instruction encoding space for adding new
instruction decodes. Additionally, it is typically desirable that
all instructions have the same fixed width in a microprocessor
architecture. Introducing variable width instructions often
causes great design complexity that would impact perfor-
mance negatively.

If, for example, it was desirable to add a new class of
instructions to an instruction set architecture such as the exist-
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ing Power instruction set architecture to support 128 regis-
ters, each address width in the new instructions would equal
7. In addition, if some of the new instructions needed to
address three source registers (VA, VB, VC) and one target
register (VT), 28 bits, 21 bits for the source register addresses
and 7 bits for the target register address. As such, there would
only be a total of four bits available for any primary and/or
secondary opcode.

For instance, it may be desirable for a new instruction class
to include floating point instruction types that perform addi-
tion, subtraction, multiplication, fused multiply-add opera-
tions, division, exponentiation, trigonometric operations,
comparison operations, and others. One conventional
approach to address this situation would be to make the
3-source operations destructive, meaning the target and one
source address would be implicitly equal, such that one
address field in the above example would not be needed,
freeing up space for additional extended opcodes. But these
destructive operations are often not convenient for compilers
and software engineers, because often times an extra copy of
the source data that would be overwritten by the destructive
operation needs to be saved away in a temporary register,
which can have potential performance problems in addition to
using valuable temporary register space.

One major reason why instruction set architectures strive
for large numbers of registers is so that loops can be
“unrolled” to minimize branch misprediction performance
penalties, and may also in certain cases be used to minimize
the performance impact of dependent instructions. The large
numbers of registers are needed to do “spills and fills” of data
without reusing the same register in a loop. Consider the
following example equation (1) where a long Taylor series
approximation is computed for sin(x) with many iterations:

x2 S 7 9 11 12 15

. X X X X
sinf0) ~ x = 37+ 57 IR

¥ ox ®
e T

Table I below, for example, illustrates a first loop unrolling,
while Table II below illustrates the results of loop unrolling
twice, where registers f1 through f10 are used for the most
significant part of the approximation, and f11 thru f20 are
used for the least significant (starts with the x'3/13! term), and
they are summed together at the end:

TABLE I

Instruction sequence for Taylor series approximation

# initially:

# 11, £2, f10 contain x

# 13, f4, 6, f8 contain 1.0
# {7 contains —1.0

loop: fmul £2, {1, 2 # 1 contains x, initially f2 contains x also

fmul £2, f1, 2 # 2 now contains x raised to the desired
exp
fadd 13, 13, f6 # increment the counter, initially
contains 1
fmul 4, f3, f4 # f4 contains the running factorial, init 1
fadd 13, 13, f6 # increment the counter
fmul 4, f3, f4 # f4 contains the running factorial
fdiv 15, 6, f4 # £5 now has the reciprocal of the factorial
fmul 8, 7, £8 # flip the sign appropriately
fmul 9, 15, £2 # multiply the reciprocal with the

X component

# correct the sign and add to the sum
in f10

# compare counter (exponent) to end
# branch back to loop if f3 < end

finadd £10, 9, 8, 10

femp f3, end
blt loop
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TABLE II

Instruction sequence with loop unrolling twice

# initially:

# f1, £2, 10 contain x

# 13, f4, 16, f8 contain 1.0

# {7 contains —1.0

# 111, f12, £20 contain x

# f13, f14, f16, f18 contain 1.0
# f17 contains —1.0

# end contains 5
loop: fmul £2, {1, 2 # f1 contains x, initially f2 contains

x also

fmul f12, f11, f12 #

fmul £2, f1, 2 # f2 now contains x raised to the
desired exp

fmul f12, f11, f12 #

fadd 13, 13, f6 # increment the counter, initially
contains 1

fadd 13, {13, f16 #

fmul 4, f3, f4 # f4 contains the running factorial,
init 1

fmul f14, {13, f14 #

fadd 13, 13, f6 # increment the counter

fadd 13, {13, f16 #

fmul 4, f3, f4 # f4 contains the running factorial

fmul f14, {13, f14 #

fdiv 13, f6, f4 # 5 now has the reciprocal of the
factorial

fdiv f15, f16, f14 #

fmul 8, 7, £8 # flip the sign appropriately

fmul 18, 17,18 #

fmul 9, 15, £2 # multiply the reciprocal with the x
component

fmul 19, f15, {12 #

fmadd f10, 19, {8, f10 # correct the sign and add to the sum
in 10

fmadd £20, f19, f18, £20  # correct the sign and add to the sum
in £20

femp f3, end # compare counter (exponent) to end

blt loop # branch back to loop if f3 <end

fadd f10, f10, £20 # sum

Note that to minimize branch mispredict penalties, loops
and other performance reasons it would be desirable to unroll
further than two times typically, but for brevity’s sake the
example shown above is only unrolled two times. Note that to
unroll the loop 4 times, approximately 40 registers would be
needed, which would push the limits of many architectures.
Notice also in the example above that there is a long string of
floating-point only instructions that have the same primary
opcode. It will also be appreciated that other types of algo-
rithms benefit from loop unrolling and large register files,
e.g., rasterization, fast Fourier transforms, etc.

Embodiments consistent with the invention utilize special-
ized hardware that uses at least one memory attribute to
perform a lookup into a table or other data structure of soft-
ware loadable opcodes, which often allows for larger register
files and/or frees up valuable opcode space for other instruc-
tions, and in many instances reduces or avoids compiler com-
plexity. The memory attribute is stored in a page table entry
(PTE) stored in an ERAT, TLB or other address translation
data structure. The PTE is associated with the a page or other
region of memory within which one or more instructions are
stored, such that the address of the instruction in an address
space is used in part to decode the instruction.

FIG. 5, for example, illustrates an exemplary data process-
ing system 200 suitable for implementing address translation-
based instruction decode consistent with the invention. Sys-
tem 200 is illustrated with a memory bus 202 coupling
together a plurality of processing cores 204 to a memory
management unit (MMU) 206. While only two processing
cores 204 are illustrated in FIG. 5, it will be appreciated that
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any number of processing cores may be utilized in different
embodiments of the invention.

Each processing core 204 is an SMT core including a
plurality (N) of hardware threads 208, along with an Effective
To Real Translation (ERAT) unit 210 and integrated [.1 cache
212. ERAT 210, as is understood in the art, serves as a cache
for memory address translation data, e.g., page table entries
(PTEs), and is typically associated with a lower level data
structure, e.g., a translation lookaside buffer (TLB) 214 dis-
posed in or otherwise accessible to MMU 206. TLB 214 may
also serve as a cache for a larger page table, which is typically
stored in a memory 216.

The memory system may include multiple levels of
memory and caches, and as such, data processing system 200
is illustrated including an .2 cache 218 coupled to MMU 206
and shared by processing cores 204. It will be appreciated,
however, that various alternative memory architectures may
be utilized in other embodiments of the invention. For
example, additional levels of cache memory, e.g., L3 caches,
may be used, and memory 216 may be partitioned in some
embodiments, e.g., in Non-Uniform Memory Access
(NUMA )-based data processing systems. Furthermore, addi-
tional cache levels may be dedicated to particular processing
cores, e.g., so that each processing core includes a dedicated
L2 cache, which may be integrated into the processing core or
coupled between the processing core and the memory bus. In
some embodiments, an .2 or L3 cache may be coupled
directly to the memory bus, rather than via a dedicated inter-
face to an MMU.

In addition, it will be appreciated that the components
illustrated in FIG. 5 may be integrated onto the same inte-
grated circuit device, or chip, or may be disposed in multiple
such chips. In one embodiment, for example, each processing
core is implemented as an IP block in a NOC arrangement,
and bus 202, MMU 206 and 1.2 cache 218 are integrated onto
the same chip as the processing cores in an SoC arrangement.
In other embodiments, bus 202, MMU 206, L2 cache 218,
and/or memory 216 each may be integrated on the same chip
or in different chips from the processing cores, and in some
instances processing cores may be disposed on separate
chips.

Given the wide variety of known processor and memory
architectures with which the invention may be utilized, it will
therefore be appreciated that the invention is not limited to the
particular memory architecture illustrated herein.

To implement address translation-based instruction decode
consistent with the invention, an instruction set architecture
(ISA) for one or more processing cores 204 in data processing
system 200 defines at least one set or class of instructions,
referred to herein as extended decode mode instructions, that
are decoded in part using one or more memory attributes
stored in a PTE. FIG. 6, for example, illustrates an exemplary
instruction layout for a non-destructive 32-bit extended
decode mode instruction 220 having three source operands
222 (VA, VB, VC) and one target operand 224 (VT), and
suitable for implementing address translation-based instruc-
tion decode consistent with the invention.

Each operand in instruction 220 is 7 bits in length, thereby
enabling up to 128 registers to be referenced for each operand.
The remaining 4 bits in this instruction are allocated between
an extended decode mode bit 226 and a 3-bit secondary
opcode 228. Extended decode mode bit 226 is used to indicate
whether an extended decode mode is to be used for the
instruction, while the secondary opcode 228 may be used to
select from among up to 8 different sub-types for the instruc-
tion type defined by a memory attribute associated with the
page or region of memory in which the instruction is stored.
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As will become more apparent below, a wide variety of
alternate instruction formats may be used consistent with the
invention. For example, rather than allocating bits to a sec-
ondary opcode, additional bits may be allocated to the oper-
ands, e.g., to support the ability to address up to 256 registers
for each source operand. Alternatively, one or more bits may
be allocated to immediate data, and in some embodiments,
one or more bits may be used to generate an index into an
opcode table in conjunction with the memory attribute. In
other embodiments, no secondary opcode may be used and/or
all 4 bits may be used for a primary opcode (with one or more
of the 16 possible primary opcodes indicating that memory
address translation-based instruction decode should be used.
In still other embodiments, multiple opcode tables may be
supported and accessed for different opcodes. As another
alternative, a record (Rc) bit may be included to control
whether status bits are updated in a condition register. There-
fore, it will be appreciated that the invention is not limited to
the particular instruction formats discussed herein.

As noted above, at least one memory attribute is used to
perform a lookup into a table or other data structure of soft-
ware loadable opcodes. The memory attribute is stored in a
page table entry (PTE) stored in an ERAT, TLB or other
address translation data structure, and the PTE is associated
with the a page or other region of memory within which one
or more instructions are stored, such that the address of the
instruction in an address space is used in part to decode the
instruction. FI1G. 7, for example, illustrates an exemplary PTE
230 capable of being maintained in an ERAT 210 or TLB 214
(FIG. 5), and extended to include various decode-related
memory attributes 232 to support address translation-based
instruction decode. Decode memory attributes 232, for
example, may define an index into a table of opcodes, with the
number of bits N enabling up to 2% opcodes to be indexed in
the table.

In addition, while in some embodiments only a single N-bit
index is required to implement address translation-based
instruction decode, in other embodiments, it may be desirable
to provide additional memory attributes useful in controlling
how an instruction is decoded, e.g., an attribute that selects
which decoder to use if multiple decoders are available. For
example, if an AXU has a decoder, it may be desirable to
permit an instruction to pass-through the normal decoder and
let the AXU decode the instruction. As another alternative, it
may be desirable to provide an attribute that forces a flush to
a micro-engine for decode. In addition, in some embodi-
ments, no separate opcode data structure may be required,
whereby the primary opcode, or at least a portion thereof, is
stored directly in the PTE and used to decode all of the
extended decode mode instructions in the associated page or
memory region.

PTE 230 also stores additional data, similar to conventional
PTEs. For example, additional page attributes 240 such as
attributes indicating whether a page is cacheable, guarded, or
read-only, whether memory coherence or write-through is
required, an endian mode bit, etc., may be included in a PTE,
as may one or more bits allocated to user mode data 242, e.g.,
for software coherency or control over cache locking options.
An access control page attribute 244 may be provided to
control what processes are permitted to access a page of
memory, e.g., by specifying a process identifier (PID) asso-
ciated with the process that is authorized to access the page, or
optionally a combination of match and/or mask data, or other
data suitable for specifying a set of processes that are autho-
rized to access a page of memory. For example, the access
control attribute may mask off one or more LSBs from a PID
so that any PID matching the MSBs in the access control
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attribute will be permitted to access the corresponding
memory page. ERAT page attribute 246 stores the effective to
real translation data for the PTE, typically including the real
address corresponding the effective/virtual address that is
used to access the PTE, as well as the effective/virtual
address, which is also used to index the ERAT via a CAM
function.

It will be appreciated that the format of PTE 230 may also
be used in TLB 214 and any other page table resident in the
memory architecture. Alternatively, the PTEs stored in dif-
ferent levels of the memory architecture may include other
data or omit some data based upon the needs of that particular
level of the memory architecture. Furthermore, it will be
appreciated that, while the embodiments discussed herein
utilize the terms ERAT and TLB to describe various hardware
logic that stores or caches memory address translation infor-
mation in a processor or processing core, such hardware logic
may be referred to by other nomenclature, so the invention is
not limited to use with ERATs and TLBs. In addition, other
PTE formats may be used and therefore the invention is not
limited to the particular PTE format illustrated in FIG. 7.

By storing decode-related attributes in a PTE, an opcode,
e.g., a primary opcode, may be determined for all of the
extended decode mode instructions stored in the page of
memory corresponding to the PTE. Typically, this opcode
will be decoded the same for every extended decode mode
instruction in the page, so it may be desirable to organize
instructions that require the same primary opcode in the same
page of memory. Other instructions that do not require
address translation-based instruction decoding (i.e., non-ex-
tended decode mode instructions) may also be provided in the
same page of memory, although typically extended decode
mode instructions that should be decoded with a different
opcode may not be included in the same page of memory. In
some embodiments, the memory attributes stored in a PTE
may provide multiple indices and thereby support multiple
opcodes for the instructions in a page of memory.

FIG. 8 for example, illustrates an exemplary data process-
ing system 250, and in particular, an exemplary processing
core therein, for the purposes of illustrating an exemplary
instruction decode that utilizes address translation-based
instruction decode consistent with the invention. An instruc-
tion buffer 252, e.g., as provided in an issue unit of a process-
ing core, may store a plurality of instructions 254 awaiting
execution by the processing core. Each instruction is typically
associated with an address 256 in which the instruction is
stored in memory. The address is typically a logical address
such as an effective or virtual address, and as such defined in
an effective or virtual address space, and it will be appreciated
that only a portion of the full address, e.g., sufficient bits to
map the instruction to a particular PTE, may be stored in the
instruction buffer in some embodiments.

Furthermore, in the illustrated embodiment, a single bit of
each instruction 254 is defined as an extended decode mode
indicator 258, which controls whether the instruction is
decoded using conventional decoding or using address trans-
lation-based instruction decode consistent with the invention.

For each instruction in instruction buffer 252, an ERAT 260
includes a corresponding PTE 262 (although typically several
instructions map to the same PTE at any given time). In the
illustrated embodiment of FIG. 8, ERAT 260 is designated an
“iERAT” to indicate that itis associated with instructions, and
a corresponding dERAT (not shown) may be provided to
handle data-related memory accesses.

Whenever an instruction 254 is to be decoded, the address
256 associated with the instruction is used to access a PTE
262 in ERAT 260 to obtain therefrom a memory attribute, and
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in particular, an index that is used to access an opcode table
264 including a plurality (N) of opcodes 266, e.g., primary
opcodes. While opcode table 264 is illustrated as a simple
table or array, it will be appreciated that opcode table 264 may
be implemented as a hash table, a linked list, or any other
suitable data structure.

Opcode table 264 is typically software-writeable, such that
a hypervisor, guest, or application may store an array of
opcodes suitable for a particular application or workload. In
one embodiment, for example, table 264 may be imple-
mented using a plurality of software-writeable special pur-
pose registers.

While not required, in some embodiments it may be desir-
able to provide an additional instruction page attribute mask
268 that may be used to mask the memory attribute(s) in PTE
262 priorto accessing table 264. Mask 268 may be a software-
writeable special purpose register, and may be used, for
example, to disable certain instructions and/or lookups into
table 264.

A primary opcode 266, indexed by the aforementioned
memory attribute, is output from opcode table 264 and
merged with all or a portion of the instruction 254 to generate
an instruction with primary opcode as shown in block 270. In
addition, in some embodiments, it may be desired to provide
an optional primary opcode mask 272, which similar to mask
268, is a software-writeable special purpose register, and
which may be used to selectively disable, set or clear one or
more bits of the primary opcode 266 output from opcode table
264. For example, as noted in memory, instruction 254 may
include a subset of a primary opcode, so mask 272 may be
used to protect this subset from being overwritten when it is
merged with the opcode output by opcode table 264.

Block 270 outputs to one input of a multiplexer 274, while
the original instruction 254 is fed to the other input of multi-
plexer 274. A select input of multiplexer 274 is controlled by
the extended decode mode indicator 258 associated with the
instruction, and multiplexer 274 outputs to decode logic 276,
which completes decoding of the instruction and initiates
execution thereof, such that, when the indicator is set, and the
extended decode mode is enabled for the instruction, multi-
plexer 274 outputs the instruction and primary opcode from
block 270 for decoding and execution, while if the indicator is
not set, and the extended decode mode is disabled for the
instruction, the original instruction is output for decoding and
execution.

As noted above, in some embodiments, a portion of the
instruction, e.g., an immediate field in the instruction, may be
used to provide a portion of the bits used to index opcode table
264. As such, an optional data path 278 may be provided to
pass a portion of instruction 254 to opcode table 264.

FIG. 9 next illustrates a sequence of operations 300 repre-
senting an instruction stream executed by a data processing
system utilizing address translation-based instruction decode
consistent with the invention. As shown in blocks 302-306, a
number of setup or initialization operations are typically per-
formed to set up address translation-based instruction
decode, including storing the desired opcodes in the opcode
table (block 302), storing any opcode and page attribute
masks (block 304), and setting page attributes in the PTEs
corresponding to the memory pages within which extended
decode mode instructions are stored (block 306). It will be
appreciated that each of these steps may be performed by an
application, or alternatively, may require a supervisory mode
entity such as an operating system or hypervisor.

Once set up, instructions in the instruction stream may be
executed as illustrated in block 308, with any extended
decode mode instructions executed in the manner discussed
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above in connection with FIG. 7. As one example, the afore-
mentioned Taylor series approximation code discussed above
in connection with Tables I and II may be unrolled multiple
times and implemented using extended decode mode instruc-
tions sharing the same primary opcode and having sub-types
such as add, multiply, divide, multiply-add, and compare, and
supporting up to 128 registers for each operand.

The disclosed invention therefore allows software to
specify primary opcodes outside of the instruction opcode,
thereby minimizing the impact of using available instruction
decode space and allowing for larger registers to be addressed
easily in a microprocessor instruction. Various additional
modifications may be made to the disclosed embodiments
without departing from the spirit and scope of the invention.
Therefore, the invention lies in the claims hereinafter
appended.

What is claimed is:

1. A circuit arrangement, comprising:

a processing unit;

a memory address translation data structure for use in
performing memory address translation for instructions
in an instruction stream being executed by the process-
ing unit, wherein the memory address translation data
structure includes a decode-related attribute associated
with an instruction from the instruction stream, wherein
the instruction is associated with an address at which the
instruction is stored in an address space, and wherein the
decode-related attribute is accessed using at least a por-
tion of the address;

decode logic configured to access the decode-related
attribute in the memory address translation data struc-
ture and decode at least a portion of an opcode for the
instruction using the decode-related attribute; and

an opcode data structure configured to store a plurality of
opcodes, wherein the decode logic is configured to
access the opcode data structure using the decode-re-
lated attribute to determine the at least a portion of the
opcode, wherein the opcode data structure comprises a
table storing the plurality of opcodes, and wherein the
decode-related attribute includes at least a portion of an
index used to select an opcode from among the plurality
of opcodes.

2. The circuit arrangement of claim 1, wherein the decode
logic is further configured to determine a second portion of
the index from an immediate field in the instruction.

3. The circuit arrangement of claim 1, further comprising a
mask coupled intermediate the memory address translation
data structure and opcode data structure and configured to
mask the decode-related attribute.

4. The circuit arrangement of claim 1, further comprising a
mask coupled to the opcode data structure and configured to
mask the at least a portion of the opcode determined from the
opcode data structure.

5. The circuit arrangement of claim 1, wherein the opcode
data structure is software writeable to store the plurality of
opcodes in the opcode data structure in response to at least
one instruction executed by the processing unit.

6. The circuit arrangement of claim 1, wherein the memory
address translation data structure includes a page table entry
associated with the address at which the instruction is stored
in the address space.

7. The circuit arrangement of claim 1, wherein the instruc-
tion includes an extended decode mode indicator that controls
whether the at least a portion of the opcode for the instruction
is decoded using the decode-related attribute.

8. The circuit arrangement of claim 1, wherein the at least
a portion of the opcode comprises a primary opcode, and
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wherein the instruction includes a secondary opcode that is
combined with the primary opcode to decode the instruction.

9. The circuit arrangement of claim 1, wherein the instruc-

tion is a 32-bit instruction and includes three 7-bit source
operands, a 7-bit target operand and the decode-related
attribute.

10. An integrated circuit device comprising:

a processing unit;

a memory address translation data structure for use in
performing memory address translation for instructions
in an instruction stream being executed by the process-
ing unit, wherein the memory address translation data
structure includes a decode-related attribute associated
with an instruction from the instruction stream, wherein
the instruction is associated with an address at which the
instruction is stored in an address space, and wherein the
decode-related attribute is accessed using at least a por-
tion of the address;

decode logic configured to access the decode-related
attribute in the memory address translation data struc-
ture and decode at least a portion of an opcode for the
instruction using the decode-related attribute; and

an opcode data structure configured to store a plurality of
opcodes, wherein the decode logic is configured to
access the opcode data structure using the decode-re-
lated attribute to determine the at least a portion of the
opcode, wherein the opcode data structure comprises a
table storing the plurality of opcodes, and wherein the
decode-related attribute includes at least a portion of an
index used to select an opcode from among the plurality
of opcodes.

5

10

22

11. A program product comprising a non-transitory com-
puter readable medium and logic definition program code
stored on the computer readable medium, the logic definition
program code defining a circuit arrangement comprising:

a processing unit;

a memory address translation data structure for use in

performing memory address translation for instructions
in an instruction stream being executed by the process-
ing unit, wherein the memory address translation data
structure includes a decode-related attribute associated
with an instruction from the instruction stream, wherein
the instruction is associated with an address at which the
instruction is stored in an address space, and wherein the
decode-related attribute is accessed using at least a por-
tion of the address;

decode logic configured to access the decode-related

attribute in the memory address translation data struc-
ture and decode at least a portion of an opcode for the
instruction using the decode-related attribute; and

an opcode data structure configured to store a plurality of

opcodes, wherein the decode logic is configured to
access the opcode data structure using the decode-re-
lated attribute to determine the at least a portion of the
opcode, wherein the opcode data structure comprises a
table storing the plurality of opcodes, and wherein the
decode-related attribute includes at least a portion of an
index used to select an opcode from among the plurality
of opcodes.



